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A derivation is given for the general equations of heat and mass transfer in decomposing
heat-shield material on the basis of using the Umov transfer equation. A simplified system
of equations is presented which contains the functional thermophysical characteristics. The
functional thermophysical characteristics are determined in a numerical example for the
case when the functionality is due to thermal decomposition of the material according to the
Axrhenius law.

At present, principally decomposing material of the bonded plastics type are used in heat shields
operating under intensive thermal load conditions, Complex and multistage physicochemical transforma-
tions occur in these materials under high~temperature heating, which alter the structure, chemical com-
position, and physical properties of the material substantially, and exert significant influence on the heat
transfer within the coating. Models based on using the mass-, energy-, and momentum-conservation
laws with different simplifying assumptions [1-4] are ordinarily used to describe mathematically the heat-
and mass~transfer processes in decomposing materials, and, as a rule, the questions of the practical
determination of the physical characteristics used in these equations hence remain open.

On the basis of using the Umov equation, the derivation of the general heat- and mass-transfer
equations in a decomposing heat-shield material is given in this paper. Simplified equations are presented
- which have been obtained by introducing the functional thermophysical characteristics. The method of de-
termining the functional thermophysical characteristics, which is based on solvmg the inverse problem,
is examined in the example of a numerical experiment.

Let us assume that the decomposing heat-shield material can be considered as a homogeneous porous
medium consisting of a gaseous phase and a solid phase, where each phase consists of a definite number
of mutually reacting components. To obtain the fundamental conservation equations, let us, analogously to
[5], use the Umov equation of substance transfer,

ac o .. .
-6=(;—+d1v(C’Vc)=-_dw(jc)+Ic, ‘ 1)
where C, Vg, jc, Ic are, respectivély, the concentration, velocity of convective transfer, diffusion flux,

and intensity of the volume sources of the substance.

The mass-conservation equation of the i-th gaseous component is obtained from (1) by using the fol-
lowing relationships:

C=mpy, Vc=V,- y o= Sjli’ Ie= Dy

s
m

(mpn) + div (spy;V,) = div (sj;,) + @y, @)
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Summing (2) over all i~components and taking account of the relationships

N N
Pi 2 Pair 2 =0 o= E By
S0 g=l g} fe=i
we obtain the mass-conservation equation for the gaseous phase:

gt_ (mpy) 4 div (sp,V,) = o,. 3)

The mass-conservation equation for the solid phase can be obtained analogously:

g— (1 — ) py,] - div (1 —$) py,V3] = — div [(1 —3) jo] +- g, @)
%— [(1 — m) ] + div [(1 —3) pyVs] = (5)
NiM NiM
Py == E Pyys @ = 2 Wy;e
i=N-+1 fa=N-+1

Here V, is the mean mass flow rate of the solid phase, the velocity of material shrinkage, or deformation
because of the thermal stresses, pressure, external forces, etc,

To derive the momentum-~conservation equation of the gas phase, let us use the relationships

$ .
C=mpV,, Vc= T Vi fo=sp, Ic=mpF,

. (6)
0] .
b {mp,Vy) + div (sp,V,V,) = grad (s,p) + mp,F,,

where p is the pressure, s, is a coefficient [6] reflecting the magnitude of the surface through which the
pressure pulse is transmitted (for the case when the porous material is a2 system of linear capillaries
sy =s), and Fy is the fictitious mass resistance force during gas filtration in the porous medium,

The equation of solid-phase motion cannot be written down, since the processes associated with dis-
placement of the solid carcass, including the shrinkage, have still been investigated only slightly., Hence,
we shall consider the velocity V, a given quantity.

Let us use the equation of state in the form
p = p,RT, M

to obtain the connection between the pressure and density of the gas phase. The energy-conservation
equation for the gas phase is obtained from (1) with the following relationships taken into account:
S r

1 | P
Cmmo (U4 Z VW) Ve=Lv, p=vt L= (o,
2 m p *,

jo = —sh, grad T, + SE byiy; - Heo + spV,,

i=1

Ie=a(T,—T)+ mp,FV; -+ 2 h;i Dygs

ix]

ER A . Ly
= [mp1 (h + - v,V, )] + div {spl (hl +o V,‘t,’1 ) Vlj =

0 . X
= 7 () + div shy grad T) — div ( E hysine )

{==}

—div(Hg,1) + o (T, — Ty + mp,F,V, + Z by oy, {8}

i==}

where HR is the integrated rad1ant energy flux (relative to the wavelengths), a is the volume coefficient
of heat exchange between the solid and gas phases, and hu is the enthalpy of the i~th gaseous component
at the temperature T,.
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The energy-conservation equation for the solid phase is
derived analogously: '

2 1 ) o] - div (L — ) Vel = iV I(L — )% grad T} —

96

/i

Nip
V4

N .
—div(Hre) —a (T, —T,) ——Zh;imli. (9)

yan

/A .

[ TN |
/

-

5 \\\\\ The transfer equations (2)~ (_9) obtained are fundamental for a re-
\Y acting multicomponent porous medium. In investigating specific

// 5 problems, this system must be supplemented by the chemical-
/ )/ . NE kinetics and radiation-transfer equations, by expressions for the
: diffusion fluxes, and the rate of shrinkage of the solid carcass,
A 4 % 9 98 £

and values of the physical characteristics entering into the com-

F1g 1 Time dependence of the plete system of equations must be given.

temperature at the points x,-x;, Estimates of the order of the terms in (2)-(9) [7] show that
(Xg=0; x; =0.04); x; =0,08; under the assumption that m = s = s; and mphy < (1 — m) pshy,
X3 =112; %, =0.2; x; = 0.4; the system of equations (2)-(9) can be reduced to the following
xg = 0.6; x;=1). simplified form in solving one~dimensional problems associated
with the intensive heating of heat-shield materials (10-100 deg/sec):
0
Bx— (mpV)) =&, = —a,, 10
9 —myp] =
o ) 0] = @, 11)
d 17} aT
—— [(1 —m) phy] = —{ 2 . 12
10— m) o) ax( ) 12)

The decomposition velocity w, at an arbitrary point x during thermal destruction of the material is deter-
mined principally by the law of temperature variation at this point and can be computed by using the
chemical~kinetics equations. Then the solutions of (10)-(11) are

i . .
mpVy = (0T (), £, HdE, O <T<L Vilm =0), (13)

) 1
(1—m)py = (1 —m) e + [0, (T(1), Hr. O<TL), (14)
0

and (12) can be written as follows:

d U aT:
— @) =—|[F
at(T)_ ( ox

ox
where ©[T{x, 1)}, F[T(x, 7)] are functionals of T({r) and ¢[T (¢, 1), x] is a functional of T(¢, 7), 0 =71 =
t, 0=sx=t=1),

) — 3‘1— ¥T), (15)

If convective heat transfer of the gas phase is neglected, we can then obtain from (10)-(12)

0T (5, 9] 5 = 2 F | T, 0 -+ QT (s, 91 6)

ot ox dx
GIT(x, 1)) = (1 —m)pycp s QIT (x, D] = — (hy — 1y) .

Here, in contrast to the nonlinear heat-conduction equation where the thermophysical characteristics are
functions of the temperature, the expressions in the square brackets are functionals of T(¢, 7). The
general sense of the introduction and practical utilization of functional thermophysical characteristics
exists under the assumption that they can be described by sufficiently simple mathematical expressions
and then determined on the basis of experimental data by means of solutions of the appropriate inverse
problems, It should be noted that the approach formulated can be used successfully to investigate indi~
vidual processes taking place in the heat and mass transfer of decomposing materials such as nonisother-
mal kinetics, microstructural analysis, ete.
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g 7 An example of a one-time determination of two func-
0-_7",” %23 tional thermophysical characteristics by solving the inverse
0 4 5 %_ N\

)

problem is presented below to illustrate the proposed ap-

0-4 ;g& proach to solving heat-transfer problems in decomposing
o - materials.
i & % [ 4 T The one-dimensional problem described by (16) under
Fig. 2. Change in the functional G at the assumption that Q[T (x, 1)] = 0 was considered:
the points Xy~ Xq. aT F) 5T
GIT (x, ©)] -—— = — F [T (x, , 17
T (x, 7)] py % [T {x, ] E» a7
OLT<ELL, 0Kx <D,
T 0)=0, T =Ty, O |y,
ax =]
16¢(0,5 —1), (01 <0.25),

T,0 =
’ o {05 105—)), 02 <i<D,

G=n-(1-+aT)+ (1 —mn)(a+ al +4aT%,
F=n(a; + agT) -+ (1 —n) (g, + a;T 4 a,T%),

t

. \
1 = exp (_S' Gy €XP (_ -:F-(';)—i}l-_()—w—) dr) '
§

a,=1; a,=0.5; ay=11; a,=—0.6; q;=0.15
= 065, a,=0.08; a;=0.16; ga,=0,36;
ay, = 3-10% a,; = 5.
The functionals G and F have been selected dependent on both the temperature and the degree of material
decomposition n; the functional dependence on the heating prehistory is taken into account in the expres-
sion for 1, which is written as the solution of the Arrhenius equation for a first-order reaction, The
problem (17) was solved on an electronic computer by using an implicit difference scheme. Shown in Fig,
1 is the time-variation in the temperature at two boundary (x;, x;) and six interior (x;-xg) points of the
material, The temperature change in the values of the functionals G and ¥ for the points (xx,) is rep-
resented in Figs. 2 and 3, The values of the functionals G and F during heating first grew along the upper

lines in Figs. 2 and 3, then went over to the lower curves and reached some maximum values along them,
and later diminished along these curves,

By the definition of the functionals G and F, the time change in the temperature at the points x4 x,
was considered known in solving the inverse problem [7].

In order to diminish the correlation between the parameters a,~ay;, the functionals G, F were given
the following form during the search:

G=n[1—T)+Tppd + 1—n)[QT —H(T — 1) p, —4T T =1 p; +T QT — 1) p],
F=n{1—T)ps+Tpd + (1 — M@ — H({T —1p, —4TT —Hp+TET =l

N = exp [——5 P10 €XP (— pu(m —2)) dr] ,

New parameters py-pyy, related to the parameters ay-ay; by the expressions

14-a 1 1
— = Oy, =y +— Q3+ — 4,
’. sz 2 Ps 2 g % 4v4

Py=2a,+ a3+ a, Ps = as, Pe = a5 + ag,

P =

1 i .
Py = ay, p8:a7+?aB+Ta9v Py = ; - 05 —+ 0y,

Pro=apexp (I —2a,), Py =2y,
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TABLE 1. Results of Solving the Inverse Problem

Result of the

Parameter Initial value search

Exact value

2,50110
0,50006
0,91072
0,99154
0,15783
0,79851
0,08204
0,25309
0,59863
13,62081
5,01374

3
N
[,

Sotbvieweaviriuie
Si® o

—
NROCCOD—OON

©
8

<3

5
oclbooooo—
oot wi=owvnt

)
=
°
[
— o

are introduced here. Such reparamefrication of the

_ £ problem considerably weakens the gully nature of the
quality criterion being minimized and, correspondingly,
increases the rate of convergence of the search,

Ok

The general problem of determining the functionals
G and F is to seek values of the parameters p;-p;; which
will assure a minimal deviation of the computed tem-
peratures from those given. Taking account of the dis-
crete deduction of the experimental and computed tem~

OV 5
g2

/ / peratures, the quality criterion was written as follows:
. . QY . e .
' qf q‘ 46 0,1, 7 N _J(pl’ pzy AR ] pll) - F:El‘% [T(xiy tj» pl: AR ] p]]) - Texp (xl., tj)]z.
Fig. 3. Change in the functional F at the The Davidon algorithm [8], which requires the
points xg~x. - evaluation of just the first derivatives of the function

being minimized and by far exceeds the method of
steepest descent in the rate of convergence and the random search method even more, was used as the
method to search for the parameters p;-py;. The values of the partial derivatives aJ/apk needed were
calculated by using first differences,

Presented in Table 1 are exact values of the parameters p,—pyy, their initial values, and results of
solving the search problem. As is seen, the solution of the inverse problem during processing the nu-
merical experiment has been obtained with sufficiently high accuracy, which indicates the possibility of
determining confident functional characteristics for real materials,

NOTATION

a, parameter; C, concentration of substance; c, specific heat; F, a functional, the filtration re-
sistance force; G, a functional; H, radiant-energy flux; h, enthalpy; I, source; J, quality criterion;
j, diffusion flux; m, volume porosity; p, pressure; Q, a functional; R, gas constant; s, surface poros-
ity, coefficient; T, temperature; t, time; U, internal energy; V, velocity; x, space coordinate; o,
heat-transfer coefficient; £, space coordinate; 7, degree of decomposition; A, heat-conduction coeffi-
cient; o, density; T, time; w, rate of formation of the chemical component; &, ¥, functionals. Sub-
scripts: 1 refers to gas phase, parameter number; 2 refers to solid phase, parameter number; C refers
to substance; i refers to number of the chemical component, thermocouple number; j refers to number
of a time point; k refers to parameter number; M refers to number of a solid-phase component; N refers
to number of a gas-phase component; p refers to specific heat at constant pressure; R refers to radiant
energy; w refers to surface temperature; exp refers to experimental results; the asterisk is defined in
(8); the bar above the symbols refers to the effective value.
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